
The eigenvalue spectrum of a large symmetric random matrix with a finite mean

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1978 J. Phys. A: Math. Gen. 11 L45

(http://iopscience.iop.org/0305-4470/11/3/002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:46

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/11/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 11, No. 3, 1978. Printed in Great Britain 

LETlXR TO THE EDITOR 

The eigenvalue spectrum of a large symmetric random matrix 
with a finite mean 

Raymund C Jones, J M Kosterlitz and D J Thouless 
Department of Mathematical Physics, University of Birmingham, Birmingham B 15 21T, 
UK 

Received 30 December 1977 

Abstract. A recently published Letter by Kota and Potbhare obtains the averaged 
spectrum of a large symmetric random matrix each element of which has a finite mean: 
their results disagree with two recent calculations which predict that under certain 
circumstances a single isolated eigenvalue splits off from the continuous semicircular 
distribution of eigenvalues associated with the random part of the matrix. This Letter 
offers a simple re-derivation of this result and corrects the error in the work of Kota and 
Potbhare. 

It is well known (Wigner 1958) that if a large N x N  real symmetric matrix has 
elements which are normally distributed with mean zero and variance J 2 / N  (but 
whose diagonal elements have variance 2J2/N),  it possesses an averaged eigenvalue 
spectrum given by the semicircular distribution 

The statistical properties of such a matrix are invariant under an orthogonal trans- 
formation and the collection of all different matrices with these properties is referred 
to as the Gaussian orthogonal ensemble (GOE). 

Edwards and Jones (1976) used the n + 0 method to obtain an asymptotic expres- 
sion for the ensemble averaged spectrum of a large symmetric N x N real matrix M 
each of whose elements was normally distributed as in the Gaussian orthogonal 
ensemble but with mean Mo/N instead of zero. They deduced a spectrum of the form 

po(A)+N-+ - (MO+&-] lMol > J  
(2) 

P o 0  1 I M o l <  J. 

P O ) =  

The same result was given by Kosterlitz et a1 (1976a, to be referred to as KTJ). 
They used the standard techniques of Slater-Koster localised perturbation theory and 
pointed out that the mode at A =MO + J2/Mo was akin to the localised state associated 
with a single impurity in a crystal. 
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L46 Letter to the Editor 

Kota and Potbhare (1977) have recently claimed that the result (2) is incorrect and 
that the spectrum should in fact be 

;(A)=po(A)+N-'po(A -MO). (3 1 
Both expressions, (2) and (3) lead, of course, to the correct answer for the spectrum of 
the degenerate matrix in which J + 0. 

Since no details of their calculation were given in KTJ we provide these here and 
point out the error in the calculation by Kota and Potbhare. 

Let M = J + V where J is a member of the Gaussian orthogonal ensemble and 
Vii = Mo/N. A straightforward orthogonal transformation on M will leave invariant 
the statistical properties of J and can be chosen so that 

MO j 0 

0 ; o  

V - M U - (  ........... ...... 

It thus suffices to study the ensemble averaged spectrum of the matrix 

M = J + M ~ .  (4) 
Denote by la) an eigenvector of J with eigenvalue J,: then we have li) = Z, u,(i)la) as 
the definition of an orthogonal transformation to this new representation. In this new 
basis m has matrix elements: 

= JaSap + ~ o u a  (1 )ue (1 1. ( 5 )  

The eigenvectors of m are given by the equation 

which has non-trivial solutions if 

If MO > J, this equation has (N - 1) solutions in the range of the eigenvalues of J ,  
and a single solution outside this range, whilst if Mo<J all solutions lie within 
the range. Defining the Green functions G and Go by G = (IA -J-Mo)-' and 
Go = (IA - J)-' respectively, we see that GY1 =f(A) /Mo and (if h is given the usual 
small positive imaginary part) the density of eigenvalues can be written 
as -(Ah)-' Im Tr G. The problem is now very similar to that of a single localised 
impurity in a crystal, the role of the impurity perturbation being taken by the single 
non-zero matrix element MO. The standard perturbation techniques for a single 
impurity (Koster and Slater 1954) can now be used and yield the exact results 

From which we find that 

Tr G=TrGO-(l-f(A])-'df/dA. (9) 
It is known that the components u,(l) which appear in (7) are normally distributed 
with mean zero and variance N-' (Porter and Rosenweig 1960, Kosterlitz et a1 
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1976b). We now argyFJthat a sum such as 2, ut(l)(A -Ja)-' may be replaced by an 
integral of the form J-25 po(q)(A - q)-' d4 where po(A) is the semicircular distribution 
(1). This procedure is correct to order N-' provided A is a distance greater than 
0 ( 1 / N )  from the cut - 2J < A < 2J. This is equivalent to treating (8 )  as a perturbation 
expansion which is averaged term by term: similar arguments using the statistical 
properties of the components ua( l )  and retaining only terms of leading order in N-' 
at each order of the perturbation expansion leads us to replace the averages of 
products of the GY1 by the product of the averages and gives a final result 

Provided that A lies a distance greater than 0 ( 1 / N )  from the cut line - 25 < A  C 2J 
in the complex plane we can evaluate ( 1 1 )  and obtain 

(Go)sf (A) /Mo=(2J2)- ' [A -(A -4J2)'"]. ( 1 2 )  

A = MO + J'/Mo 

For MO > J there is a solution of the equation f(A ) = 1 at 

(13) 
which is precisely the isolated eigenvalue obtained by Edwards and Jones (1976) and 
KTJ. The corresponding contribution to the averaged eigenvalue spectrum is easily 
seen from (10) to be N-'S[A -(MO+ J2/Mo)] .  The consistency of our procedure can 
be checked by counting the number of states when A lies in the range, - 25 < A  < 2J, 
of the continuum of eigenvalues of the random matrix. This number is given by 

1 A -2Mo C25 1 +2J 

-i 77 J -25 dA ImTr(G)= -- IT J - 2 1  dA(ImTr(Go)+- 2 (Mo+J2/Mo-A)(4J2-A 2 ) I,,). 

(14) 
A straightforward contour integration shows this to be N - 1 for MO> J and N when 
MO < J :  i.e. as MO increases from zero across the value J, one state moves outside the 
range IA I < 2J. This agrees with the eigenvalue density (2). 

Equations (10) and ( 1 2 )  can also be used to obtain the moments of the eigenvalue 
density: the pth moment is the coefficient of A-('+') in the expansion of Tr (G). The 
contribution arising from the matrix MO is given by 

4 ~ 2  -1/2 

A 
Tr (G) - Tr (Go) = ( 1 - 7) 

The properties of the hypergeometric function F(a,  6 ,  c ;  z )  (Abramowitz and Stegun 
1965, p 556) allow this to be written as 

Tr  (G) -Tr (Go) 

Mo" 
= x F ( l + t n , ; + a n ,  1 + n ; 4 J 2 / A 2 )  

n = l  A 
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The error in the work of Kota and Potbhare (1977) occurs in their equation (2). 
Using the notation of the present Letter they write 

(MO + J)’ = M5 + k1 pcq(Mo)p-q Jq + Jp. (17) 

The matrices MO and J do not however commute, and so the ‘identity’ (17) which the 
authors use as their starting point is false, and the rest of the Letter is in error. Because 
of the cyclic invariance of the trace this error does not show up until the fourth 
moment. There we have 

(18) 
We may evaluate this by using the statistical properties of the ua(i)  and dropping 
terms whose expectation value is zero. Direct evaluation of the second term on the 
right gives 

q = l  

(Tr (MO + J)*) = (Tr M:) + 4(Tr M3’) + 2(Tr MoJMoJ) + (Tr J4). 

(Tr Ma’) = M 2 ’  (19) 
whilst the third term gives 

(Tr MoJMoJ) = 2N-’M3’. 

The mistake of Kota and Potbhare is to replace equation (20) by equation (19) so that 
the coefficient of M 3 ’  is given as 6 instead of 4. In general they find the coefficient of 

result of their failure to take account of the fact that the matrices do not commute. 
M p - 2 4  J 2q to be p ! / @ - 2 q ) ! ( q +  l)!q! instead of the p ! / ( p - 4 ) ! 4 !  given by (16) as a 
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